207 research outputs found

    A novel high resolution contactless technique for thermal field mapping and thermal conductivity determination: Two-Laser Raman Thermometry

    Get PDF
    We present a novel high resolution contactless technique for thermal conductivity determination and thermal field mapping based on creating a thermal distribution of phonons using a heating laser, while a second laser probes the local temperature through the spectral position of a Raman active mode. The spatial resolution can be as small as 300300 nm, whereas its temperature accuracy is ±2\pm 2 K. We validate this technique investigating the thermal properties of three free-standing single crystalline Si membranes with thickness of 250, 1000, and 2000 nm. We show that for 2-dimensional materials such as free-standing membranes or thin films, and for small temperature gradients, the thermal field decays as T(r)ln(r)T(r) \propto ln(r) in the diffusive limit. The case of large temperature gradients within the membranes leads to an exponential decay of the thermal field, Texp[Aln(r)]T \propto exp[-A \cdot ln(r)]. The results demonstrate the full potential of this new contactless method for quantitative determination of thermal properties. The range of materials to which this method is applicable reaches far beyond the here demonstrated case of Si, as the only requirement is the presence of a Raman active mode

    Tensile strain mapping in flat germanium membranes

    Get PDF
    Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al.Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ~4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.This work was carried out under the RCUK Basic Technology Programme supported by research Grant Nos. EP/F040784/1, EP/J001074/1, EP/L007010/1, by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement NANOFUNCTION No. 257375, by TAPHOR (MAT2012–31392), and by FP7 project MERGING (Grant No. 309150). This research used equipment funded by AWM and ERDF through the Science City Energy Efficiency project.Peer Reviewe

    Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.We report on stress induced changes in the dispersion relations of acoustic phonons propagating in 27 nm thick single crystalline Si membranes. The static tensile stress (up to 0.3 GPa) acting on the Si membranes was achieved using an additional strain compensating silicon nitride frame. Dispersion relations of thermally activated hypersonic phonons were measured by means of Brillouin light scattering spectroscopy. The theory of Lamb wave propagation is developed for anisotropic materials subjected to an external static stress field. The dispersion relations were calculated using the elastic continuum approximation and taking into account the acousto-elastic effect. We find an excellent agreement between the theoretical and the experimental dispersion relations.The authors acknowledge financial support from the FP7 project MERGING (grant no. 309150); the Spanish MICINN projects nanoTHERM (grant no. CSD2010-0044) and TAPHOR (MAT2012-31392). JGB gratefully acknowledges support from the Spanish government through a Juan de la Cierva fellowship. MP and AS acknowledge funding from the Academy of Finland (grant no. 252598).Peer Reviewe

    Localized thinning for strain concentration in suspended germanium membranes and optical method for precise thickness measurement

    Get PDF
    We deposited Ge layers on (001) Si substrates by molecular beam epitaxy and used them to fabricate suspended membranes with high uniaxial tensile strain. We demonstrate a CMOS-compatible fabrication strategy to increase strain concentration and to eliminate the Ge buffer layer near the Ge/Si hetero-interface deposited at low temperature. This is achieved by a two-steps patterning and selective etching process. First, a bridge and neck shape is patterned in the Ge membrane, then the neck is thinned from both top and bottom sides. Uniaxial tensile strain values higher than 3% were measured by Raman scattering in a Ge membrane of 76 nm thickness. For the challenging thickness measurement on micrometer-size membranes suspended far away from the substrate a characterization method based on pump-and-probe reflectivity measurements was applied, using an asynchronous optical sampling technique.EC/FP7/628197/EU/Heat Propagation and Thermal Conductivity in Nanomaterials for Nanoscale Energy Management/HEATPRONAN

    High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Get PDF
    Under the terms of the Creative Commons Attribution (CC BY) license to their work.-- et al.A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm2. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.This work was carried out under the RCUK Basic Technology Programme supported by research Grant Nos. EP/F040784/1, EP/J001074/1, and EP/L007010/1. It also received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement NANOFUNCTION n°257375 alongside funding from TAPHOR (MAT2012–31392) and FP7 Project MERGING (Grant No. 309150). Vibrational property measurements were funded by the ERC under Grant No. 202735, NonContactUltrasonic.Peer Reviewe

    LizarMong: Excellent Key Encapsulation Mechanism based on RLWE and RLWR

    Get PDF
    The RLWE family algorithms submitted to the NIST post-quantum cryptography standardization process have each merit in terms of security, correctness, performance, and bandwidth. However, there is no splendid algorithm in all respects. Besides, various recent studies have been published that affect security and correctness, such as side-channel attacks and error dependencies. To date, though, no algorithm has fully considered all the aspects. We propose a novel Key Encapsulation Mechanism scheme called LizarMong, which is based on RLizard. LizarMong combines the merit of each algorithm and state-of-the-art studies. As a result, it achieves up to 85% smaller bandwidth and 3.3 times faster performance compared to RLizard. Compared to the NIST\u27s candidate algorithms with a similar security, the bandwidth is about 5-42% smaller, and the performance is about 1.2-4.1 times faster. Also, our scheme resists the known side-channel attacks

    Hypersonic phonon propagation in one-dimensional surface phononic crystal

    Get PDF
    Hypersonic, thermally activated surface acoustic waves propagating in the surface of crystalline silicon patterned with periodic stripes were studied by Brillouin light scattering. Two characteristic directions (normal and parallel to the stripes) of surface acoustic waves propagation were examined exhibiting a distinctive propagation behavior. The measured phononic band structure exhibits diverse features, such as zone folding, band gap opening, and hybridization to local resonance for waves propagating normal to the stripes, and a variety of dispersive modes propagating along the stripes. Experimental results were supported by theoretical calculations performed using finite element method

    Formal Verification of Masked Hardware Implementations in the Presence of Glitches

    Get PDF
    Masking provides a high level of resistance against side-channel analysis. However, in practice there are many possible pitfalls when masking schemes are applied, and implementation flaws are easily overlooked. Over the recent years, the formal verification of masked software implementations has made substantial progress. In contrast to software implementations, hardware implementations are inherently susceptible to glitches. Therefore, the same methods tailored for software implementations are not readily applicable. In this work, we introduce a method to formally verify the security of masked hardware implementations that takes glitches into account. Our approach does not require any intermediate modeling steps of the targeted implementation and is not bound to a certain leakage model. The verification is performed directly on the circuit’s netlist, and covers also higher-order and multivariate flaws. Therefore, a sound but conservative estimation of the Fourier coefficients of each gate in the netlist is calculated, which characterize statistical dependence of the gates on the inputs and thus allow to predict possible leakages. In contrast to existing practical evaluations, like t-tests, this formal verification approach makes security statements beyond specific measurement methods, the number of evaluated leakage traces, and the evaluated devices. Furthermore, flaws detected by the verifier are automatically localized. We have implemented our method on the basis of an SMT solver and demonstrate the suitability on a range of correctly and incorrectly protected circuits of different masking schemes and for different protection orders. Our verifier is efficient enough to prove the security of a full masked AES S-box, and of the Keccak S-box up to the third protection order

    A Tale of Two Shares: Why Two-Share Threshold Implementation Seems Worthwhile-and Why it is Not

    Get PDF
    In this work, we explore the possibilities for practical Threshold Implementation (TI) with only two shares in order for a smaller design that needs less randomness but is still first-order leakage resistant. We present the first two-share Threshold Implementations of two lightweight block ciphers---Simon and Present. The implementation results show that two-share TI gains in compactness while loses in throughput compared with three-share schemes. Moreover, the leakage analyses show that two-share TI retains perfect first-order resistance but is shadowed by a strong second-order leakage, making it less worthwhile
    corecore